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Impedance Restrictions on Independent Finger Grippers ‘;";nalinﬁgpbgm‘;hoosmg an approprigf®; }, we say thatf is a full

M. E. Brokowski and Michael Peshkin
B. Scope of This Paper

Abstract—The impedance matrices of independent point fingers of US'“Q this language, W? will determine two things. First, W_e wil
a multifingered gripper map to the impedance matrix of a grasped determine the number of fingers that must grasp an workpart in order
workpart. We find that in a planar geometry, three fingers are enough to  to achieve a full rank mapping from the finger damping matrices to
allow an unrestricted range of workpart impedances, if finger impedances the damping matrix of the workpart.

are selectable. In a spatial geometry however, five fingers are necessary \we will also determine the limitations on the attainable damp-
for the broadest range of workpart impedances, and even so there is one

impedance matrix that a workpart cannot attain regardless of the number ing/accommodation matrices of the g'_’aSped workpart when it is

of fingers that grasp it. We find this “unattainable” impedance matrix. ~ grasped by fewer than the number of fingers needed for a full rank

We also characterize the impedance restrictions on workparts grasped mapping. That is, when we have too few fingers to get any workpart

with fewer than five spatial or three planar fingers. damping/accommodation matrix that we want, which ones can we
Index Terms—Compliance, grippers, impedance, multifingered, restric-  Still get?

tions, robot. We do not address the inverse problem of designing finger accom-

modations for a particular desired workpart accommodation. In this

paper, the damping matrices of the fingers are assumed known, it is

the damping characteristics of the grasped workpart that we wish to
Force-guided assembly allows a robot to use the forces generagggermine.

during an assembly operation to guide the operations successfujve also do not determine optimal grasp geometry. The positions

completion. One implementation of force-guided assembly utilizg§ the fingers on the workpart are unrestricted, but they are assumed
impedance control, wherein a workpart's impedance is specified syghpe known.

that forces resulting from errors in positioning are mapped to motions
that reduce the errors [14].

Consider a multifingered gripper where each finger can ha\(;‘e
a specifyable impedance characteristic. A grasped workpart will* The robot is rigid outside of its fingers. That is, we are not
have an effective impedance characteristic that is a function of the treating any damping of the robot which cannot be accounted for

in the fingers. In addition, the workpart is a rigid, massless body,
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« The forcel/velocity characteristic of each finger may be describedA typical accommodation mapping using linear damping is given
entirely by its own damping matrix. That is, the forces felt byoy v = v, + A f whereA is the accommodation matri¥, is the force

one finger do not affect the motion of another. vector due to some contact erret, is the nominal robot velocity,
e Contact friction between workpart and fingers is high enougindw is the resulting total velocity of the workpart.
that slip does not occur. There are two distinct paradigms used in analyzing accommodating
* We assume contact characteristic of hard, point fingers stalhanipulators. The first is to design the nominal velocity (the path,
grasping a workpart. for successful task completion, assuming that we know the impedance
(A) of the manipulator. This approach is commonly referred to as
Il. BACKGROUND fine motion planning8], [9]. The second paradigm, known &wce-

guided assemblydesigns the impedanded) for success, knowing
the nominal path(vy) [14].

It is this second utilization of accommodation control which moti-
Accommodatiordescribes a force-to-velocity relationship in mevates this paper as we examine what sorts of workpart accommodation

chanical systems. The inverse relationship, the mapping from velggatrices are possible to design, given that a specified number of
ities to forces, is known adamping.When the force acting on a fingers are grasping the workpart.

damper varies in proportion to its velocity, we hdireear damping.
Thus, a linear damper is characterized by

A. Accommodation and Damping

Il. RELATED WORK
f=Dv (1)
A. Force-Guided Assembly

The implementation of this second paradigm of force-guided error-
v=D"'f=Af (2) corrective assembly has been examined by several authors. Whitney
| describes the use of emote center of compliancéRCC)
st for a special task, the chamfered peg-in-hole insertion. Others
examine more general assembly tasks. Peshkin [14] studies assembly
using linear accommodation using nondiagonal accommodation ma-
trices. Peshkin and Schimmels [17] determine a systematic approach
to identify the bounds of force-guided assembly and a systematic

and, for accommodation

For planar systems, if we represent v as a vector of rotational a‘[r/i
translational velocitie$ v, v,]* and represent the force vectgr
similarly [ f. f,]7, then all of the linear force-velocity relationships
at a point O can be described with a genelaiping matrixsuch as
the 3 x 3 matrix Dyorkpart ShOWn in (3).

T dor dpr dyr ] [w approach to design a manipulator's accommodation matrix. Lui
fol| = |dow dow dys | |ve |- (3) and Asada [10] utilize neural networks to implement nonlinear
fy Ay duy  dyy | |vy accommodation mappings as do Gullapatlal [3]. Vougioukas and

. o . Gottschlich [19] examine an approach for automatic generation of
We note here that a damping matrix will look different to Observer@ompliance mappings using a computer to generate and test error

in different coordinate systems. When we say the damping matrix @nfigurations. Ahret al. [1] implement a learning-based system on
point O we mean the damping matrix as referred to a coordinalescara robot.

system fixed at point O.

A generalized damping matrix for spatial cases is shown belowB. Multifingered Gripping

Tx dogry  duyry  dury dogry  doyry, door, Mason and Salisbury [16] study grasping of a workpart by mul-
Ty duogry  duyry duoory dugry  dvyry door tifingered grippers and discuss point finger and soft finger contact
- Qogre duyre doere duyre dvyr o, as well as forces necessary for force and form closure. Payandeh
fe dogfo doypy docgy dogpy dayp, dog, and Goldenberg [13] examine the inverse problem of determining
Ty Qdoyr, doyp, deop, dugp, doyr, dog, finger impedances for a desired workpart impedance. Several authors
f- Toafe duoype docpe duge dugg. dog. examine conditions necessary to achieve force- and form-closure and
We related grasps [15], [18].
wy Much work has gone into studying the internal forces fingers
« ¥ 1. 4) must exert on workparts in order to hold a workpart without slip
Vs at the workpart-finger contact points and without violating joint-
Uy

torque limits of the fingers. Metrics for quantifying these conditions
as well as several other measures of grasp effectiveness have aided
the evaluation and optimization of multifingered grasps [2]-[7], [12].
Melchiorri [11] examines the mapping from joint velocities to part
Two important concerns have driven interest in impedance contralocities in manipulation devices with different contact constraints,
in robotics. Most robots are position-controlled but have limited p@ategorizing the vector spaces involved in the mapping in several
sitional accuracy. By implementing accommodation at the workpaways. Melchiorri's work examining vector mappings is similar to the
the force generated by collisions can be made to map into a velocitgrk presented here except that 1) he looks at force-to-force and
in the direction opposite that of the force, allowing the error to beelocity-to-velocity mappings rather than impedance mappings and
overcome without damage. In such a case, accommodation has l&ehe does not examine spatial point fingers.
used to ensureonsistentoehavior, so that no geometric constraints Previous work in multifingered gripping focuses on several areas,
are violated (e.g. [14]). including the relationship between the motions of fingers and of a
However, impedance control is not limited to ensuring that erroggasped workpart; force- and form-closure for a particular grasp;
in robot position do not cause damage; it is also used to map tiéernal forces exerted by fingers onto a grasped workpart; and
forces produced by these errors irgoor-corrective motions [14], the inverse problem of finding optimal grasp geometry or optimal
[17] which ensure proper completion of placement tasks. force distribution. In the present paper, we examine the impedance

B. Motivation
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B. “Vectorizing” the Matrices; the Geometry Transform Matidk

Ordinarily, matrices map vectors to vectors. Here, we are interested
of2 in how matrices map to other matrices, particularly how finger
damping matrices map to workpart damping matrices. In order to
use familiar tools in our study of matrix to matrix mappings, we
Fig. 1. Two fingers grasp a disk-shaped workpart at contact pointnd may_recast our subject matrices as vectors. We then study the larger
¢5. The damping matrices of the fingers are known at pofatand f,. How ~Matrices which relate them. . . .
do we determine the effective damping matrix of the workpart at point 0?  For notational convenience, we define a “vectorize” functien.
Suppose we have @ x ¢ matrix A. Then we say that

o J1

restrictions that occur in thearward mapping from finger damping vec(A) = [a11 a1 ...apq]T, (8)
matrices to a workpart damping matrix. We determine whether a full

rank mapping exists with a given number of fingers and what sortsWe will apply this toD..«par to Create, for example, a 36-vector
of workpart damping matrices are still attainable when a workpart @it of a 6 x 6 matrix.

grasped with too few fingers to assure a full rank mapping. We are also interested in vectorizing the damping matrices of the
fingers. To vectorize a set of matrices, we expand our definitimeof
IV. DETERMINING EFFECTIVE DAMPING somewhat. Le{D;},i = 1---n, be a set ol matrices whose purely
MATRICES FOR A GRASPED WORKPART translational submatrices afd’;},i = 1--- n. For example, if
To examine whether a given number of fingers is sufficient to dor  dpr  dyr J d
achieve a full rank mapping, we must first describe how the damping D, = (d.. d.. dy. then T, = [d“ dyl}_ ©)
matrices of the individual fingers map to the damping matrix of Aoy doy dyy Ty

the grasped workpart. In this section, we present this mapping ] ) ] )
(Section IV-A) and then “vectorize” the result of this mapping FOr such asetof matrices, we define the vectorize function to be

ion IV-A hi he fi h ine i ion V. ,
(Section ) to achieve the form that we examine in Section vee{D:} = [vec(Ty) vec(T) ~--vec(Tn)]T. (10)

A. Moving and Adding Damping Matrices So thatvec{D,} is a vector of all of the purely translational
Suppose that fingers grasp a workpart. The fingers touch a workelements in the set of matricddD; }.
part at contact point§ei, co,- -+, ¢, }. Let the damping matrices of  Examining (5), we can see that the damping matrix of the workpart
the fingers at those points &, Do, -+, D, }.! We are interested Dworkpart iS linearly related to the damping matrices of each of the
in the effective damping matri®...«parc Of the workpart at a point fingers. We can vectorize the workpart damping mafi¥crpart
0. (Fig. 1 depicts an example with two fingers.) and the set of. finger damping matrice¢D;},i = 1---n. Doing
It can be shown that the effective workpart damping matrix dbis, we rewrite (5) as
point O is given by
vec(Dyorkpart) = B vec{D;}. (12)

Dworkpart = Z(H Z)ZJ_1)TD1(H ZJ_1) (5)

=1

We note that, forn fingers grasping a workpart, a planar
. ] ) . ~ vec(Dyorkpart) 18 the 9x 1 column vector representing the nine

WhereH is a matrix representing the point contact constraints Qflements of the % 3 matrix Dyoripare and a spatiavec( Dyorkpart)
moments and rotations for hard, point contact [16]. These constrajgity 36 x 1 column vector. Similarly, a planarec{D;} is a4nx 1
matrices “reduce” the finger damping matrices, leaving only thjumn vector of thetn translational elements dfD; } and a spatial

purely translational elements nonzero. We note that vec{D;} is a9nx 1 column vector of thén translational elements
0 0 0 of {D;}. Consequently, a planaB will be a 9 x4n geometry
Hyonar =10 1 0 and (6a) transform matrix accounting for the geometry introduced by the
0 0 1 grasp in (5) while a spatiaB will be a 36 x9n matrix.

_ {03x3 0Oaxs
Hspa,tia] —

Now, (11) is our vectorized version of (5) describing the relation-
O3x3  Isxs :| '

(6b)  ship between the damping matrices of the fingers and the resulting
effective damping matrix of the workpart. We can now examine
@ is the Cartesian transformation matrix (following the notatiothis relationship with the well-known tools used to analyze vector
in [2]) which relates the instantaneous velocity fréto ¢; (so that mappings.
vo = gJwv.,). For instance, the transformation matrix from A to B

in spatial cases is given by V. ANALYZING THE GEOMETRY TRANSFORM MATRIX B

By= {I‘JX‘J 03%} where We would like to be able to specify the damping characteristics
Rsxs Isxs of a grasped workpart by varying the damping characteristics of the
0 —TB/A,  TB/Ay fingers which grasp the workpart. By examining propertieBafuch
Rixs = | r1/a, 0 —7rB/Ax (7) as its rank and nullspace we can learn about the limitations of the
—TB/Ay  TB/Ax 0 mapping from{D;} t0 Dyorkpart-

for velocity vectors as defined in Section Il-A and where
TB/Ax,TB/Ay, and rgss, are the components of vectors, . A. The Rank of3

from A to B. If the rank of B is less than the number of elementsINoicpare
lRecall that we mean by this that the damping matrices of the ﬁlj;.ber_l there are some restrlcthns on what damping characterlst|c§ are
gers referred to coordinate systems fixed at poin{sy, fo,- -, f.} are attainable by a workpart even if we have full control over the damping

{D:1,Ds, -+, D,}. characteristics of the fingers.
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TABLE | TABLE I
# fingers {(D;} Rank  Rank needed for Rank # fingers {D;} Rank Rank needed for Rank
n of B_ _ full rank mapping Deficiency ] of B full rank mapping Deficiency
2 general 7 9 2 3 general 24 36 12
3 general 9 9 none 4 general 30 36 6
2 symmetric 5 6 1 5 general 35 36 1
3 symmetric 6 6 none more than 3 general 35 36 1
3 symmetric 15 21 6
More formally, the number of independently specifyable elements 4 symmetric 18 21 3

in the workpart damping matriDyerkpart IS €qual to or less than 5
the rank of the geometry transform matd

By a simple counting argument, we expect there to be a minimurmore than 5 symmetric 20 21 L
number of fingers needed to achieve a full rank mapping. For
example, consider a planar workpart which has nine elements in
!ts d?”f‘p'”g matrix. .We would expect. .thaF two f'”gefs would b\?vere rank deficiencies i when the workpart was held with too
insufficient to allow independent specification of all nine, becau:?e

: ) , ) - Tew fingers, but, by adding more fingers (until we had at least three
the purely translational elements of the two fingers’ damping matnc%a al), we could always achieve a full rank mapping

o 0,

have only eight |n.dependent.elements themselves. prever, we WI?‘\Iot so in the spatial cases. We see in the above table that,
see that, even with what might seem to be a sufficient number %f L - .
. . . . o - though the five-fingered case shows a deficiency of one in both the
fingers according to this counting argument, it is possible that the : . . . .
) , ! . . astymmetrlc and the symmetric cases, adding additional fingers does
fingers’ damping matrices are coupled in some way and do not act . e L -
. - ,not eliminate the deficiency. That is, five fingers is the best we can
independently to allow for a full rank mapping to the workpart's o . " ) )

. . do and additional fingers will not result in a full rank mapping. There
damping matrix. ) - . : .

is always at least one restriction on the spatial damping matrices that
) ] we can attain, regardless of how many fingers we use. We now turn
B. Ranks of Various3 Matrices our attention to determining what that restriction is.
Here we show the ranks aB for several cases of workparts

grasped by different numbers of fingers. We also show the ragk The Left Nullspace oB

needed to achieve a full rank mapping and the difference betwee

the tvyo. The d_ef|C|ency Is the number of restrl_ctlons on the partr'ﬁatrices that we cannot attain using a given number of fingers, the
dampmg resulting from lack of a full r.aqk mapping. qu example., Rext obvious guestion ishat arethose matrices? This is what the
deficiency of 2 means there are two distinct mathematical I’EStI‘ICtIOlgﬁ nullspace ofB helps us determine. We can determine orthogonal
on the elements oDvoripart Where_ egch restriction may involve bases for the left nullspace & which reveal the restrictions on the
several elements, but not necessarily imply that two of the eleme%&?ainable workpart damping matrices

of Dworkpm'f are zero. . .
) ) . The property of the left nullspace concerning us is that, for
1) Planar Cases: Table | displays ranks aB matrices for planar any attainable workpart matriDopen, the dot product of the

geometry. We show thg ranks for b.Oth sym.metrlc as well as tb/%ctorizedDworkpart with any vector in the left nullspace dB is
more general asymmetric finger damping matrices because symme}gpo That is

impedances are common in applications. Note, however, that the ran et Dyuainanie be the space of all vectorized attainable workpart

shown as needed for a.fuII rank ma.ppi.ng oa symmetric Workpadémping matrices (theolumn spacer rangeof B) and letD,.1 be
assumes that we are using sym_metrlc flng_ers. It is possible for th_%qg set of vectors in the left nullspace Bt then
to be symmetric workpart matrices to which we cannot map wit
two general fingers. VD orkpart D veC(Dyorkpart) € Dattainable and
The general cases are not terribly surprising since they say that VD, 5 vec(D,,) € Dpun
three fingers are needed to fuIIy_ specify the part’s_ damping matrix. vec(Duoriopart) - vee(Dy, ) =0. 12)
We would conclude the same thing from our counting argument.
In the symmetric cases, counting shows that there are six indepenA consequence of this property is that there is no wayBoto
dently choosable elements in the symmetric fingers’ matrices and siap any finger matrices into the left nullspaceRf implying that,
elements in the workpart’s resulting symmetric matrix. Thereforér any workpart damping matrix in the left nullspace Bf there is
it might seem possible to specify every element in the workpartf® possibility of choosing a set of finger damping matri¢é } to
damping matrix when it is grasped with just 2 fingers. However, thechieve that workpart matrix.
rank of B for this case is five, so there is still one restriction on the 1) Grasp-Dependent Left Nullspace3he left nullspace ofBB is
elements of the workpart's damping matrix. Three fingers must spanned by basis vectors which are vectorized damping matrices.
used to achieve a full rank mapping, just as in the general case. These nullspace basis vectors are of two types. The first type is
2) Spatial Cases:Table Il displays ranks aB matrices for spatial grasp-dependent. Such vectors depend on the particular positions of
geometry. As for the planar cases, we show the ranks for bdtfe contact points{ci,c2,---, ¢, } at which the fingers grasp the
symmetric and general finger damping matrices. workparts.
There is a particularly interesting phenomenon in the spatial case€onsider a simple example of a grasp-dependent nullspace vector
which does not occur in the planar cases. In the planar cases, tHerghe case where a planar workpart is grasped by two horizontally

symmetric 20 21 1

"Since we know from examining the rank @ that there are
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opposed symmetric fingers, each located equally distant from the z
part's centerO (so thatry, = —ri. andriy = ray = 0). ¥
We can determine the grasp-dependent left nullspace vector,

vec(Dyun ), satisfying (12). Recall that vectors here are vectorized

X
matrices; when returned to matrix form, our nullspace vector is w \ D Y O:) F
10 0
A

Dnn”: 0 0 0 . (13)
0 0 —ri,

We can take the dot product of this nullspace vector with the L»D = D -
vectorized form of the general8 3 planar damping matrix presented k
earlier in (1). Doing this, we find B

2
duwr = 11,dyy. (14) Fig. 2. According to the circulant restriction for a system with a damping

o ) ) . only along and about-axis, if a positive rotation results in a positive force,
Which implies that, regardless of the damping matrices of the twlen a positive velocity will result in a negative torque.

symmetric fingers, the torsional resistance to rotatién.) will be
coupled to the resistance to motion along thexis (d,,) by the
length of the effective moment arm, which is not surprising.

Unfortunately, the grasp-dependent nullspace vectors are, in g
eral, algebraically complicated and are usually quite challenging
interpret, particularly for the spatial cases.

2) Grasp-Independent NullspaceFhe second type of left vec(Dyorkpart) - vec(C) =0 (18)
nullspace vector does not depend upon the particular geometry of

the contact points. Nullspace vectors of this type are restrictions gh carmying out this dot product with the general spatial damping

what workpart damping matrices are attainable regardless of Wh%gtnx given in (4), we find the restriction that appliesaib spatial
the fingers grasp the workpart. workpart

For example, in the planar case where we specify three symmetric d., -, + do,r, + do.r, +du, s, +du,y, +du.y. =0 (29)
fingers grasping a workpart, the three orthogonal left nullspace

This type of matrix is known as eirculant and we will call itC.
Itni_s a nullspace in all of the spatial cases, regardless of how many
? gers grasp a workpart or whether or not they are symmetric. From
g 2), its presence as a left nullspace vector implies that

vectors (in matrix form) that result for the workpart are given by and

"0 1 07 doyry +doyr, +do.r, =0 (20)

-1 0 0 (15a) for symmetric matrices. We must note that, although the circulant is
|0 0 0] its own inverse, the restriction on damping does not imply that the
ro o0 1] same restriction exists for accommodation.

0 0 0| and (15b) One mechanical interpretation of this circulant restriction is that
-1 0 0 there is no way to force a finger-held workpart to behave as a simple
30 0 03 thr_eaded fastener. For example, suppose we w_am a workpart to move
o o 1l (15¢) unimpeded except along gnd about thaxis. This implies that we

0 -1 0 want zero workpart damping elements exceptdoy., andd.., . -

- - According to (19), to achieve this our workpart must then have

Dotting these vectors with a general>3 3 matrix, we note that Qoyr, 4o =0 OF dury = —du. s, 1)
the attainable workpart damping matrices must be such that :
This implies that the translational resistance to torques must be

a1 =dyz (16a) the oppositeof the torsional resistance to translations. For example,
ds; =di3 and (16b) suppose we choost,, -, positive, so that a positive-axis rotation
doz = dzs. (16c) Mapstoa positive:-axis force, as shown in Fig. 2(a). Then, accord-

ing to (21), a corresponding positiveaxis velocity will necessarily
Therefore, such nullspace vectors imply that, regardless of whenap to a negative-axis torque [Fig. 2(b)], which is the opposite of
we place the symmetric fingers, the workpart will have a symmetréic simple threaded fastener.
damping matrix. Again, a sensible result.
From our examination of ranks, we note that the rankBofor VI. CONCLUSION

spatial cases never rises above 35. This implies that, regardless %e have examined how the damping characteristics of point

how many fmg_ers grasp a spatl_al workpart, we can never aChIe\"ﬁn{’lgers map to damping characteristics of a grasped workpart. By
full rank mapping, as we could in the planar case by using three ‘Q/réctorizing” the workpart and finger damping matrices, we have
more fingers to grasp the workpart. An interesting nullspace VeCtorf(')Srmulated the mapping in such a way that we can define’a geometry
the one for spatial workparts held by five or more fingers. The matrf?(ansform matrixB relating the damping matrices of the fingers to
form of this vector turns out to be

the effective damping matrix of the workpart. The rankBfallows

000100 us to determine how many fingers need grasp a workpart to achieve

000010 a full rank mapping. (A full rank mapping would mean that we could
Doyt = 00 0001 17) confer any dgsired damping mat_rix upon the workpart by choosing

100000 appropriate finger damping matrices.)

0010000 We have determined that planar workparts must be held with a

001 0 00

minimum of three fingers in order to achieve full rank mappings. We
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have compared this result to a naive counting argument and foupd] S. Vougioukas and S. Gottschlich, “Automatic synthesis and validation
that the counting argument erroneously predicts that only two fingers ©of compliance mappings,” iint. Conf. Robot. AutomatAtlanta, GA,

are needed for planar symmetric full rank mappings.

1993, pp. 491-496.
20] D. E. Whitney, “Quasistatic assembly of compliantly supported rigid

We have found that, for spatial workparts, a five_—fingered grasp " parts,” ASME J. Dynam. Syst., Measure., Cantol. 104, pp. 65-77,
allows for the maximum range of attainable matrices. However, 1982,

there remains one restriction on the attainable workpart damping
matrices that persists regardless of the number of fingers that grasp
the workpart or where they grasp it.

By examining the left nullspace dB, we are able to characterize

the restrictions on attainable workpart damping matrices when a
workpart is grasped with an insufficient number of fingers to achieve
a full rank mapping. Examination oB reveals that the circulant
matrix describes the fundamental restriction on all damping matrices
attainable by spatial workparts.
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