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Pérez, eds. Cambridge, MA: MIT Press, 1992.

[17] L. E. Weiss, A. C. Sanderson, and C. P. Neuman, “Dynamic sensor-
based control of robots with visual feedback,”IEEE J. Robot. Automat.,
vol. 3, pp. 404–417, 1987.

[18] T. Yoshikawa, “Analysis and control of robot manipulators with redun-
dancy,” in Robotics Research: The First Int. Symp.Cambridge, MA:
MIT Press, 1983, pp. 735–747.

[19] B. Yoshimi and P. K. Allen, “Active, uncalibrated visual servoing,” in
Proc. IEEE Int. Conf. Robot. Automat., San Diego, CA, May 1994, pp.
156–161.

[20] J. Y. Zheng, Q. Chen, and A. Tsuji, “Active camera guided manipula-
tion,” in Proc. IEEE Int. Conf. Robot. Automat,,1991, pp. 632–638.

Impedance Restrictions on Independent Finger Grippers

M. E. Brokowski and Michael Peshkin

Abstract—The impedance matrices of independent point fingers of
a multifingered gripper map to the impedance matrix of a grasped
workpart. We find that in a planar geometry, three fingers are enough to
allow an unrestricted range of workpart impedances, if finger impedances
are selectable. In a spatial geometry however, five fingers are necessary
for the broadest range of workpart impedances, and even so there is one
impedance matrix that a workpart cannot attain regardless of the number
of fingers that grasp it. We find this “unattainable” impedance matrix.
We also characterize the impedance restrictions on workparts grasped
with fewer than five spatial or three planar fingers.

Index Terms—Compliance, grippers, impedance, multifingered, restric-
tions, robot.

I. INTRODUCTION

Force-guided assembly allows a robot to use the forces generated
during an assembly operation to guide the operations successful
completion. One implementation of force-guided assembly utilizes
impedance control, wherein a workpart’s impedance is specified such
that forces resulting from errors in positioning are mapped to motions
that reduce the errors [14].

Consider a multifingered gripper where each finger can have
a specifyable impedance characteristic. A grasped workpart will
have an effective impedance characteristic that is a function of the
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impedances of the fingers and of the grasp geometry (i.e. the points
where the fingers contact the workpart). Often, we wish to confer
a particular impedance characteristic on a workpart by specifying
particular impedance characteristics for the fingers that grasp it.
For linear admittance/impedance*, this means that the impedance
matrices of the fingers map to an effective impedance matrix of the
grasped workpart.

The goal of this paper is to explore what sorts of impedance
properties a grasped workpart can have when gripped with a given
number of fingers whose impedance we can control.

A. Language

Suppose that we can choose each element of each fingers damping
matrix to be whatever we want. If we can confer a particular damping
matrix on the workpart by choosing an appropriate set of these finger
damping matrices, then we say that the workpart damping matrix is
attainable.

More formally, let fDDDig; i = 1 � � �n; be the set ofn damping
matrices corresponding ton fingers grasping some workpart and let
the damping matrix of the grasped workpart as a function of that set
beDDDworkpart = f(fDDDig): ThenDDDworkpart is attainable if and only if

9fDDDig 3 DDDworkpart = f(fDDDig):

Further, if all workpart damping matrices are attainable, each
attained by choosing an appropriatefDDDig; we say thatf is a full
rank mapping.

B. Scope of This Paper

Using this language, we will determine two things. First, we will
determine the number of fingers that must grasp an workpart in order
to achieve a full rank mapping from the finger damping matrices to
the damping matrix of the workpart.

We will also determine the limitations on the attainable damp-
ing/accommodation matrices of the grasped workpart when it is
grasped by fewer than the number of fingers needed for a full rank
mapping. That is, when we have too few fingers to get any workpart
damping/accommodation matrix that we want, which ones can we
still get?

We do not address the inverse problem of designing finger accom-
modations for a particular desired workpart accommodation. In this
paper, the damping matrices of the fingers are assumed known, it is
the damping characteristics of the grasped workpart that we wish to
determine.

We also do not determine optimal grasp geometry. The positions
of the fingers on the workpart are unrestricted, but they are assumed
to be known.

C. Assumptions

• The robot is rigid outside of its fingers. That is, we are not
treating any damping of the robot which cannot be accounted for
in the fingers. In addition, the workpart is a rigid, massless body,
a reasonable approximation for workparts which are relatively
stiff and light compared to the fingers which hold them.

• We speak of damping/accommodation properties, though gener-
alization to impedances, including stiffness and mass, is totally
analogous for our rigid massless workparts.

1042–296X/97$10.00 1997 IEEE
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• The force/velocity characteristic of each finger may be described
entirely by its own damping matrix. That is, the forces felt by
one finger do not affect the motion of another.

• Contact friction between workpart and fingers is high enough
that slip does not occur.

• We assume contact characteristic of hard, point fingers stably
grasping a workpart.

II. BACKGROUND

A. Accommodation and Damping

Accommodationdescribes a force-to-velocity relationship in me-
chanical systems. The inverse relationship, the mapping from veloc-
ities to forces, is known asdamping.When the force acting on a
damper varies in proportion to its velocity, we havelinear damping.
Thus, a linear damper is characterized by

fff = DDDvvv (1)

and, for accommodation

vvv = DDD
�1

fff = AAAfff: (2)

For planar systems, if we represent v as a vector of rotational and
translational velocities[! vx vy]

T and represent the force vectorfff
similarly [� fx fy]

T ; then all of the linear force-velocity relationships
at a point O can be described with a generaldamping matrixsuch as
the 3� 3 matrixDDDworkpart shown in (3).

�

fx
fy

=

d!� dx� dy�
d!x dxx dyx
d!y dxy dyy

!

vx
vy

: (3)

We note here that a damping matrix will look different to observers
in different coordinate systems. When we say the damping matrix at
point O we mean the damping matrix as referred to a coordinate
system fixed at point O.

A generalized damping matrix for spatial cases is shown below.

�x
�y
�z
fx
fy
fz

=

d! � d! � d! � dv � dv � dv �

d! � d! � d! � dv � dv � dv �

d! � d! � d! � dv � dv � dv �

d! f d! f d! f dv f dd f dv f

d! f d! f d! f dv f dv f dv f

d! f d! f d! f dv f dv f dv f

�

!x
!y
!z
vx

vy
vz

: (4)

B. Motivation

Two important concerns have driven interest in impedance control
in robotics. Most robots are position-controlled but have limited po-
sitional accuracy. By implementing accommodation at the workpart,
the force generated by collisions can be made to map into a velocity
in the direction opposite that of the force, allowing the error to be
overcome without damage. In such a case, accommodation has been
used to ensureconsistentbehavior, so that no geometric constraints
are violated (e.g. [14]).

However, impedance control is not limited to ensuring that errors
in robot position do not cause damage; it is also used to map the
forces produced by these errors intoerror-corrective motions [14],
[17] which ensure proper completion of placement tasks.

A typical accommodation mapping using linear damping is given
by vvv = vvv0+AAAfff whereAAA is the accommodation matrix,fff is the force
vector due to some contact error,vvv0 is the nominal robot velocity,
andvvv is the resulting total velocity of the workpart.

There are two distinct paradigms used in analyzing accommodating
manipulators. The first is to design the nominal velocity (the path,vvv0)

for successful task completion, assuming that we know the impedance
(AAA) of the manipulator. This approach is commonly referred to as
fine motion planning[8], [9]. The second paradigm, known asforce-
guided assembly,designs the impedance(AAA) for success, knowing
the nominal path(vvv0) [14].

It is this second utilization of accommodation control which moti-
vates this paper as we examine what sorts of workpart accommodation
matrices are possible to design, given that a specified number of
fingers are grasping the workpart.

III. RELATED WORK

A. Force-Guided Assembly

The implementation of this second paradigm of force-guided error-
corrective assembly has been examined by several authors. Whitney
[20] describes the use of aremote center of compliance(RCC)
wrist for a special task, the chamfered peg-in-hole insertion. Others
examine more general assembly tasks. Peshkin [14] studies assembly
using linear accommodation using nondiagonal accommodation ma-
trices. Peshkin and Schimmels [17] determine a systematic approach
to identify the bounds of force-guided assembly and a systematic
approach to design a manipulator’s accommodation matrix. Lui
and Asada [10] utilize neural networks to implement nonlinear
accommodation mappings as do Gullapalliet al. [3]. Vougioukas and
Gottschlich [19] examine an approach for automatic generation of
compliance mappings using a computer to generate and test error
configurations. Ahnet al. [1] implement a learning-based system on
a SCARA robot.

B. Multifingered Gripping

Mason and Salisbury [16] study grasping of a workpart by mul-
tifingered grippers and discuss point finger and soft finger contact
as well as forces necessary for force and form closure. Payandeh
and Goldenberg [13] examine the inverse problem of determining
finger impedances for a desired workpart impedance. Several authors
examine conditions necessary to achieve force- and form-closure and
related grasps [15], [18].

Much work has gone into studying the internal forces fingers
must exert on workparts in order to hold a workpart without slip
at the workpart-finger contact points and without violating joint-
torque limits of the fingers. Metrics for quantifying these conditions
as well as several other measures of grasp effectiveness have aided
the evaluation and optimization of multifingered grasps [2]–[7], [12].

Melchiorri [11] examines the mapping from joint velocities to part
velocities in manipulation devices with different contact constraints,
categorizing the vector spaces involved in the mapping in several
ways. Melchiorri’s work examining vector mappings is similar to the
work presented here except that 1) he looks at force-to-force and
velocity-to-velocity mappings rather than impedance mappings and
2) he does not examine spatial point fingers.

Previous work in multifingered gripping focuses on several areas,
including the relationship between the motions of fingers and of a
grasped workpart; force- and form-closure for a particular grasp;
internal forces exerted by fingers onto a grasped workpart; and
the inverse problem of finding optimal grasp geometry or optimal
force distribution. In the present paper, we examine the impedance
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Fig. 1. Two fingers grasp a disk-shaped workpart at contact pointsc1 and
c2: The damping matrices of the fingers are known at pointsf1 andf2: How
do we determine the effective damping matrix of the workpart at point O?

restrictions that occur in theforward mapping from finger damping
matrices to a workpart damping matrix. We determine whether a full
rank mapping exists with a given number of fingers and what sorts
of workpart damping matrices are still attainable when a workpart is
grasped with too few fingers to assure a full rank mapping.

IV. DETERMINING EFFECTIVE DAMPING

MATRICES FOR A GRASPED WORKPART

To examine whether a given number of fingers is sufficient to
achieve a full rank mapping, we must first describe how the damping
matrices of the individual fingers map to the damping matrix of
the grasped workpart. In this section, we present this mapping
(Section IV-A) and then “vectorize” the result of this mapping
(Section IV-A) to achieve the form that we examine in Section V.

A. Moving and Adding Damping Matrices

Suppose thatn fingers grasp a workpart. The fingers touch a work-
part at contact pointsfc1; c2; � � � ; cng: Let the damping matrices of
the fingers at those points befD1; D2; � � � ; Dng.1 We are interested
in the effective damping matrixDDDworkpart of the workpart at a point
O: (Fig. 1 depicts an example with two fingers.)

It can be shown that the effective workpart damping matrix at
point O is given by

DDDworkpart =

n

i=1

(HHH
O
c JJJ

�1
)
T
DDDi(HHH

O
c JJJ

�1
): (5)

WhereHHH is a matrix representing the point contact constraints on
moments and rotations for hard, point contact [16]. These constraint
matrices “reduce” the finger damping matrices, leaving only the
purely translational elements nonzero. We note that

HHHplanar =

0 0 0

0 1 0

0 0 1

and (6a)

HHHspatial =
03�3 03�3
03�3 I3�3

: (6b)

O
c JJJ is the Cartesian transformation matrix (following the notation

in [2]) which relates the instantaneous velocity fromO to ci (so that
vvvO =

c
OJJJvvvc ): For instance, the transformation matrix from A to B

in spatial cases is given by

B
AJJJ =

III3�3 03�3

RRR3�3 III3�3
where

RRR3�3 =

0 �rB=Az rB=Ay
rB=Az 0 �rB=Ax
�rB=Ay rB=Ax 0

(7)

for velocity vectors as defined in Section II-A and where
rB=Ax; rB=Ay; and rB=Az are the components of vectorrB=A;
from A to B.

1Recall that we mean by this that the damping matrices of the fin-
gers referred to coordinate systems fixed at pointsff1; f2; � � � ; fng are
fDDD1;DDD2; � � � ;DDDng.

B. “Vectorizing” the Matrices; the Geometry Transform MatrixB

Ordinarily, matrices map vectors to vectors. Here, we are interested
in how matrices map to other matrices, particularly how finger
damping matrices map to workpart damping matrices. In order to
use familiar tools in our study of matrix to matrix mappings, we
may recast our subject matrices as vectors. We then study the larger
matrices which relate them.

For notational convenience, we define a “vectorize” functionvecvecvec:

Suppose we have ap � q matrix AAA: Then we say that

vec(AAA) = [a11 a12 � � � apq]
T
: (8)

We will apply this toDDDworkpart to create, for example, a 36-vector
out of a 6� 6 matrix.

We are also interested in vectorizing the damping matrices of the
fingers. To vectorize a set of matrices, we expand our definition ofvec
somewhat. LetfDDDig; i = 1 � � �n; be a set ofn matrices whose purely
translational submatrices arefTTT ig; i = 1 � � �n: For example, if

DDD1 =

d!� dx� dy�

d!x dxx dyx

d!y dxy dyy

then TTT 1 =
dxx dyx

dxy dyy
: (9)

For such asetof matrices, we define the vectorize function to be

vecfDDDig = [vec(TTT 1) vec(TTT 2) � � �vec(TTTn)]
TTT
: (10)

So thatvecfDDDig is a vector of all of the purely translational
elements in the set of matricesfDDDig:

Examining (5), we can see that the damping matrix of the workpart
DDDworkpart is linearly related to the damping matrices of each of the
fingers. We can vectorize the workpart damping matrixDDDworkpart

and the set ofn finger damping matricesfDDDig; i = 1 � � �n: Doing
this, we rewrite (5) as

vec(DDDworkpart) = BBB vecfDDDig: (11)

We note that, forn fingers grasping a workpart, a planar
vec(DDDworkpart) is the 9� 1 column vector representing the nine
elements of the 3� 3 matrixDDDworkpart and a spatialvec(DDDworkpart)

is a 36� 1 column vector. Similarly, a planarvecfDDDig is a4n� 1
column vector of the4n translational elements offDDDig and a spatial
vecfDDDig is a9n� 1 column vector of the9n translational elements
of fDDDig: Consequently, a planarBBB will be a 9 �4n geometry
transform matrix accounting for the geometry introduced by the
grasp in (5) while a spatialBBB will be a 36�9n matrix.

Now, (11) is our vectorized version of (5) describing the relation-
ship between the damping matrices of the fingers and the resulting
effective damping matrix of the workpart. We can now examine
this relationship with the well-known tools used to analyze vector
mappings.

V. ANALYZING THE GEOMETRY TRANSFORM MATRIX B

We would like to be able to specify the damping characteristics
of a grasped workpart by varying the damping characteristics of the
fingers which grasp the workpart. By examining properties ofBBB such
as its rank and nullspace we can learn about the limitations of the
mapping fromfDDDig to DDDworkpart:

A. The Rank ofB

If the rank ofBBB is less than the number of elements inDDDworkpart

then there are some restrictions on what damping characteristics are
attainable by a workpart even if we have full control over the damping
characteristics of the fingers.
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TABLE I

More formally, the number of independently specifyable elements
in the workpart damping matrixDDDworkpart is equal to or less than
the rank of the geometry transform matrixBBB:

By a simple counting argument, we expect there to be a minimum
number of fingers needed to achieve a full rank mapping. For
example, consider a planar workpart which has nine elements in
its damping matrix. We would expect that two fingers would be
insufficient to allow independent specification of all nine, because
the purely translational elements of the two fingers’ damping matrices
have only eight independent elements themselves. However, we will
see that, even with what might seem to be a sufficient number of
fingers according to this counting argument, it is possible that the
fingers’ damping matrices are coupled in some way and do not act
independently to allow for a full rank mapping to the workpart’s
damping matrix.

B. Ranks of VariousB Matrices

Here we show the ranks ofBBB for several cases of workparts
grasped by different numbers of fingers. We also show the rank
needed to achieve a full rank mapping and the difference between
the two. The deficiency is the number of restrictions on the part’s
damping resulting from lack of a full rank mapping. For example, a
deficiency of 2 means there are two distinct mathematical restrictions
on the elements ofDDDworkpart; where each restriction may involve
several elements, but not necessarily imply that two of the elements
of DDDworkpart are zero.

1) Planar Cases:Table I displays ranks ofBBB matrices for planar
geometry. We show the ranks for both symmetric as well as the
more general asymmetric finger damping matrices because symmetric
impedances are common in applications. Note, however, that the rank
shown as needed for a full rank mapping to a symmetric workpart
assumes that we are using symmetric fingers. It is possible for there
to be symmetric workpart matrices to which we cannot map with
two general fingers.

The general cases are not terribly surprising since they say that
three fingers are needed to fully specify the part’s damping matrix.
We would conclude the same thing from our counting argument.

In the symmetric cases, counting shows that there are six indepen-
dently choosable elements in the symmetric fingers’ matrices and six
elements in the workpart’s resulting symmetric matrix. Therefore,
it might seem possible to specify every element in the workpart’s
damping matrix when it is grasped with just 2 fingers. However, the
rank ofBBB for this case is five, so there is still one restriction on the
elements of the workpart’s damping matrix. Three fingers must be
used to achieve a full rank mapping, just as in the general case.

2) Spatial Cases:Table II displays ranks ofBBB matrices for spatial
geometry. As for the planar cases, we show the ranks for both
symmetric and general finger damping matrices.

There is a particularly interesting phenomenon in the spatial cases
which does not occur in the planar cases. In the planar cases, there

TABLE II

were rank deficiencies inBBB when the workpart was held with too
few fingers, but, by adding more fingers (until we had at least three
total), we could always achieve a full rank mapping.

Not so in the spatial cases. We see in the above table that,
though the five-fingered case shows a deficiency of one in both the
asymmetric and the symmetric cases, adding additional fingers does
not eliminate the deficiency. That is, five fingers is the best we can
do and additional fingers will not result in a full rank mapping. There
is always at least one restriction on the spatial damping matrices that
we can attain, regardless of how many fingers we use. We now turn
our attention to determining what that restriction is.

C. The Left Nullspace ofB

Since we know from examining the rank ofBBB that there are
matrices that we cannot attain using a given number of fingers, the
next obvious question iswhat are those matrices? This is what the
left nullspace ofBBB helps us determine. We can determine orthogonal
bases for the left nullspace ofBBB which reveal the restrictions on the
attainable workpart damping matrices.

The property of the left nullspace concerning us is that, for
any attainable workpart matrixDDDworkpart; the dot product of the
vectorizedDDDworkpart with any vector in the left nullspace ofBBB is
zero. That is,

Let Dattainable be the space of all vectorized attainable workpart
damping matrices (thecolumn spaceor rangeof BBB) and letDnull be
the set of vectors in the left nullspace ofBBB; then

8DDDworkpart 3 vec(DDDworkpart) 2Dattainable and

8DDDn 3 vec(DDDn) 2Dnull

vec(DDDworkpart) � vec(DDDn) = 0: (12)

A consequence of this property is that there is no way forBBB to
map any finger matrices into the left nullspace ofBBB; implying that,
for any workpart damping matrix in the left nullspace ofBBB; there is
no possibility of choosing a set of finger damping matricesfDDDig to
achieve that workpart matrix.

1) Grasp-Dependent Left Nullspaces:The left nullspace ofBBB is
spanned by basis vectors which are vectorized damping matrices.
These nullspace basis vectors are of two types. The first type is
grasp-dependent. Such vectors depend on the particular positions of
the contact pointsfc1; c2; � � � ; cng at which the fingers grasp the
workparts.

Consider a simple example of a grasp-dependent nullspace vector
for the case where a planar workpart is grasped by two horizontally
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opposed symmetric fingers, each located equally distant from the
part’s centerO (so thatr2x = �r1x andr1y = r2y = 0):

We can determine the grasp-dependent left nullspace vector,
vec(DDDnull); satisfying (12). Recall that vectors here are vectorized
matrices; when returned to matrix form, our nullspace vector is

DDDnull =

1 0 0

0 0 0

0 0 �r21x

: (13)

We can take the dot product of this nullspace vector with the
vectorized form of the general 3� 3 planar damping matrix presented
earlier in (1). Doing this, we find

d!� = r
2
1xdyy: (14)

Which implies that, regardless of the damping matrices of the two
symmetric fingers, the torsional resistance to rotation(d!�) will be
coupled to the resistance to motion along they-axis (dyy) by the
length of the effective moment arm, which is not surprising.

Unfortunately, the grasp-dependent nullspace vectors are, in gen-
eral, algebraically complicated and are usually quite challenging to
interpret, particularly for the spatial cases.

2) Grasp-Independent Nullspaces:The second type of left
nullspace vector does not depend upon the particular geometry of
the contact points. Nullspace vectors of this type are restrictions on
what workpart damping matrices are attainable regardless of where
the fingers grasp the workpart.

For example, in the planar case where we specify three symmetric
fingers grasping a workpart, the three orthogonal left nullspace
vectors (in matrix form) that result for the workpart are given by

0 1 0

�1 0 0

0 0 0

(15a)

0 0 1

0 0 0

�1 0 0

and (15b)

0 0 0

0 0 1

0 �1 0

: (15c)

Dotting these vectors with a general 3� 3 matrix, we note that
the attainable workpart damping matrices must be such that

d21 = d12 (16a)

d31 = d13 and (16b)

d23 = d32: (16c)

Therefore, such nullspace vectors imply that, regardless of where
we place the symmetric fingers, the workpart will have a symmetric
damping matrix. Again, a sensible result.

From our examination of ranks, we note that the rank ofBBB for
spatial cases never rises above 35. This implies that, regardless of
how many fingers grasp a spatial workpart, we can never achieve a
full rank mapping, as we could in the planar case by using three or
more fingers to grasp the workpart. An interesting nullspace vector is
the one for spatial workparts held by five or more fingers. The matrix
form of this vector turns out to be

DDDnull =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

: (17)

Fig. 2. According to the circulant restriction for a system with a damping
only along and aboutx-axis, if a positive rotation results in a positive force,
then a positive velocity will result in a negative torque.

This type of matrix is known as acirculant and we will call itCCC:
It is a nullspace in all of the spatial cases, regardless of how many
fingers grasp a workpart or whether or not they are symmetric. From
(12), its presence as a left nullspace vector implies that

vec(DDDworkpart) � vec(CCC) = 0 (18)

or, carrying out this dot product with the general spatial damping
matrix given in (4), we find the restriction that applies toall spatial
DDDworkpart

dv � + dv � + dv � + d! f + d! f + d! f = 0 (19)

and

dv � + dv � + dv � = 0 (20)

for symmetric matrices. We must note that, although the circulant is
its own inverse, the restriction on damping does not imply that the
same restriction exists for accommodation.

One mechanical interpretation of this circulant restriction is that
there is no way to force a finger-held workpart to behave as a simple
threaded fastener. For example, suppose we want a workpart to move
unimpeded except along and about thex-axis. This implies that we
want zero workpart damping elements except fordv � andd! f :

According to (19), to achieve this our workpart must then have

dv � + d! f = 0 or dv � = �d! f : (21)

This implies that the translational resistance to torques must be
the oppositeof the torsional resistance to translations. For example,
suppose we choosedv � positive, so that a positivex-axis rotation
maps to a positivex-axis force, as shown in Fig. 2(a). Then, accord-
ing to (21), a corresponding positivex-axis velocity will necessarily
map to a negativex-axis torque [Fig. 2(b)], which is the opposite of
a simple threaded fastener.

VI. CONCLUSION

We have examined how the damping characteristics of point
fingers map to damping characteristics of a grasped workpart. By
“vectorizing” the workpart and finger damping matrices, we have
formulated the mapping in such a way that we can define a geometry
transform matrixBBB relating the damping matrices of the fingers to
the effective damping matrix of the workpart. The rank ofBBB allows
us to determine how many fingers need grasp a workpart to achieve
a full rank mapping. (A full rank mapping would mean that we could
confer any desired damping matrix upon the workpart by choosing
appropriate finger damping matrices.)

We have determined that planar workparts must be held with a
minimum of three fingers in order to achieve full rank mappings. We
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have compared this result to a naive counting argument and found
that the counting argument erroneously predicts that only two fingers
are needed for planar symmetric full rank mappings.

We have found that, for spatial workparts, a five-fingered grasp
allows for the maximum range of attainable matrices. However,
there remains one restriction on the attainable workpart damping
matrices that persists regardless of the number of fingers that grasp
the workpart or where they grasp it.

By examining the left nullspace ofBBB; we are able to characterize
the restrictions on attainable workpart damping matrices when a
workpart is grasped with an insufficient number of fingers to achieve
a full rank mapping. Examination ofBBB reveals that the circulant
matrix describes the fundamental restriction on all damping matrices
attainable by spatial workparts.
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Fault Tolerant Operation of Kinematically
Redundant Manipulators for Locked

Joint Failures

Christopher L. Lewis and Anthony A. Maciejewski

Abstract—This paper studies the degree to which the kinematic redun-
dancy of a manipulator may be utilized for failure tolerance. A redundant
manipulator is considered to be fault tolerant with respect to a given task
if it is guaranteed to be capable of performing the task after any one
of its joints has failed and is locked in place. A method is developed for
determining the necessary constraints which insure the failure tolerance
of a kinematically redundant manipulator with respect to a given critical
task. This method is based on estimating the bounding boxes enclosing
the self-motion manifolds for a given set of critical task points. The
intersection of these bounding boxes provides a set of artificial joint limits
that may guarantee the reachability of the task points after a joint failure.
An algorithm for dealing with the special case of 2-D self-motion surfaces
is presented. These techniques are illustrated on a PUMA 560 that is used
for a 3-D Cartesian positioning task.

Index Terms—Fault tolerance, Jacobian matrices, kinematically redun-
dant, manipulator kinematics, manipulators, redundant systems.

I. INTRODUCTION

Kinematically redundant manipulators have been proposed for use
in the cleanup and remediation of nuclear and hazardous materials,
as well as for remote applications such as space or sea exploration
[1], [2]. In these applications repairing broken actuators and sensors
is impossible and the probability of their failure is increased due to
the harsh operating environment [3]–[5]. The redundant degrees of
freedom may or may not also be equipped with redundant actuators
[6]. The extra degrees of freedom (DOF) of a redundant manipulator
may be used to compensate for a failed joint if the manipulator has
been properly designed and controlled. The most basic task of a
manipulator, i.e., the positioning and/or orienting of the end-effector
in the workspace, is described by the forward kinematic equation

x = f(�) (1)

where x 2 Rm is the generalized vector of the position and/or
orientation of the end-effector and� 2 Rn is the vector of joint
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